3 days popular7 days popular1 month popular3 months popular

A lung cancer risk prediction model and newly established risk threshold can more efficiently identify who should be screened for lung cancer

A new method for determining risk could more efficiently identify individuals for annual screening and catch more cancers early, according to a study published in PLOS Medicine. The study, conducted by Martin Tammemägi of Brock University, Canada, and colleagues, evaluates a lung cancer risk prediction model and identifies a risk threshold for selecting individuals for annual .

Computed Tomography (CT) screening can identify lung tumors while they are still treatable, and the US National Lung Screening Trial (NLST) found that annual screening of high-risk smokers can reduce lung cancer mortality by 20%. The best way to identify those at high risk remains an important question. The U.S. Preventive Services Task Force (USPSTF) recommends annual screening based on hard cutoffs for age and smoking duration/intensity, and doesn’t recommend screening former smokers who quit more than 15 years ago. The PLCOm2012 model was developed based on studying lung cancer incidence in participants from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). In addition to considering age, smoking duration/intensity, and quit time of former smokers, PLCOm2012 also considers race/ethnicity, socioeconomic circumstance, body mass index, personal history of cancer, chronic obstructive pulmonary disease, and family history of lung cancer to determine a risk score for lung cancer.

Tammemägi and colleagues used data from the NLST to identify a risk threshold (PLCOm2012 score ? 0.0151) to identify people who should receive annual CT screening. This threshold was applied, alongside the USPSTF criteria, to smokers who were screened in the PLCO trial. The authors found that 8.8% fewer people exceeded the threshold than met the USPSTF criteria (p < 0.001), but 12.4% more lung cancers were identified using the threshold. Using the threshold resulted in higher sensitivity (80.1% [95% CI 76.8%-83.0%] versus 71.2% [95% CI 67.6%-74.6%], p < 0.001), specificity (66.2% [95% CI 65.7%-66.7%] versus 62.7% [95% CI 62.2%-63.1%], p < 0.001), and positive predictive values (4.2% [95% CI 3.9%-4.6%] versus 3.4% [95% CI 3.1%-3.7%], p < 0.001) than UPSTF criteria. The authors noted that 8.5% of smokers who quit more than 15 years ago exceeded the PLCOm2012 threshold, and there were no never-smokers who exceeded the threshold. Additionally, risks and incidence of lung cancer were significantly greater for smokers aged ?65-80 years than among those aged 55-64 years.

Applying the PLCOm2012 risk threshold can more efficiently identify candidates for CT screening than the USPSTF criteria.

The authors say: “This should make lung cancer screening more attractive for policy-makers, and more affordable for health systems.”

Data available for this study did not allow for cost-effectiveness evaluation.


Evaluation of the Lung Cancer Risks at Which to Screen Ever- and NeverSmokers: Screening Rules Applied to the PLCO and NLST Cohorts, Tammemägi MC, Church TR, Hocking WG, Silvestri GA, Kvale PA, et al., PLoS Med, doi:10.1371/journal.pmed.1001764, published 2 December 2014.

Although the National Cancer Institute funded the PLCO and NLST, there were no funding sources for the current ancillary study, and no external agency had influence or a role in the current study’s design, conduct, data collection, analysis, decision to publish, or preparation of the manuscript.

CB is a consultant for Medial Cancer Screening, Ltd., a diagnostic algorithm start-up company based in Tel Aviv working on improved methods of early detection of cancer using pre-existing information in the medical record.

PLOS Medicine