3 days popular7 days popular1 month popular3 months popular

Caltech biologists identify gene that helps regulate sleep

Caltech biologists have performed the first large-scale screening in a vertebrate animal for genes that regulate sleep, and have identified a gene that when overactivated causes severe insomnia. Expression of the gene, neuromedin U (Nmu), also seems to serve as nature’s stimulant–fish lacking the gene take longer to wake up in the morning and are less active during the day.

The findings improve our understanding of how sleep is regulated–a process that we know surprisingly little about despite its clear importance. In the long term, the results suggest Nmu as a potential candidate for new therapies to address sleep disorders.

A paper describing the new screening process and its results appears in the February 17, 2016, issue of the journal Neuron. David Prober, assistant professor of biology at Caltech, began the work as a postdoctoral fellow at Harvard University, and has continued the work at Caltech since 2009. The lead authors on the paper are Cindy Chiu (PhD ’14), a former graduate student in Prober’s lab, and Jason Rihel, who collaborated with Prober at Harvard and now has his own lab at University College London.

“Sleep is a mysterious process,” says Prober. “We spend a third of our lives doing it, and every animal with a complex nervous system seems to do it, so it must be important. But we still don’t understand why we do it or how it’s regulated.”

Genetic screens are a powerful method that can help identify the genetic basis of such behaviors. They typically involve mutating the DNA of thousands of animals, raising them, identifying any resulting physical or behavioral differences, and determining which altered gene produced each mutation. This approach works well for simple model organisms, such as fruit flies and worms, because their anatomy is relatively simple and it is easy to raise large numbers of them, but is far more difficult in vertebrates, such as rodents.

Recently, zebrafish have emerged as a valuable vertebrate model system for studying sleep. Compared to a mouse, the small, striped fish are much easier to work with. Many can be raised in a small space (a larva is about 4 millimeters long, about the same size as a fruit fly); they develop quickly, exhibiting complex behaviors, such as hunting, by the time they are five days old; and they are transparent during their embryonic and larval stages, making it simpler for researchers to track what is happening inside their brains. Like humans, zebrafish sleep for consolidated periods of time at night. Furthermore, Prober says, “anatomical and molecular similarities between zebrafish and mammalian brains suggest that the basic neural circuits regulating sleep in zebrafish are likely conserved in mammals.”

Rather than mutating the DNA and testing which functions were lost, the researchers used a gain-of-function approach in the new study. Just after fertilization, when the zebrafish embryos were still single cells, the researchers injected them with a DNA molecule, called a plasmid, carrying a gene that was inserted into the genome of some of the cells in each fish. In particular, they wanted to test genes that are predicted to encode for secreted proteins–those, like neuropeptides, that cells make and then release. Many of the genes that have been identified as being involved in sleep encode neuropeptides.