3 days popular7 days popular1 month popular3 months popular

Essential Blood Cell Gene Loss Leads To Anemia

Researchers at Brigham and Women’s Hospital (BWH) have discovered a new gene that regulates during red formation. The findings advance the biomedical community’s understanding and treatment of human anemias and disorders.

The study was published online in Nature.

The researchers used an unbiased zebrafish genetic screen to clone mitochondrial ATPase inhibitory factor-1 gene, or Atpif1. The gene allows animals – zebrafish, mice and humans for instance – to efficiently make hemoglobin. Hemoglobin is the protein in red blood cells responsible for transporting oxygen in the blood.

The researchers found that loss of Atpif1 causes severe anemia. Moreover, the researchers uncovered a broader mechanistic role for Atpif1 – regulating the enzymatic activity of ferrochelatase, or Fech. Fech is the terminal enzyme in heme (a component of hemoglobin) synthesis.

“Our study has established a unique functional link between Atpif1-regulated mitochondrial pH, redox potential, and [2Fe-2S] cluster binding to Fech in modulating its ,” said , PhD, BWH Division of Hematology, , first study author.

The researchers were also able to produce data on the human version of Atpif1, noting its functional importance for normal red blood cell differentiation, and noting that a deficiency may contribute to human diseases, such as congenital sideroblastic anemias and other diseases related to dysfunctional mitochondria (the energy powerhouses of cells).

“Discovering the novel mechanism of Atpif1 as a regulator of heme synthesis advances the understanding of mitochondrial heme homeostasis and red blood cell development,” said Barry Paw, MD, PhD, BWH Division of Hematology, Department of Medicine, senior study author.

Shah and Paw continue to identify new genes responsible for hematopoietic stem cell development and red cell differentiation. Their identification of new genes will elucidate the new mechanisms regulating hematopoiesis – the formation of blood cell components. Their work not only provides greater insight into human congenital anemias, but also new opportunities for improved therapies.

Source

Anemia, a condition in which your blood has a lower than normal number of red blood cells or hemoglobin levels, can affect people of all ages. Women of childbearing age and older adults are at higher risk. Babies and children are also at risk for anemia due to nutritional iron deficiency or lead poisoning.

Shah and Paw also have faculty appointments at Harvard Medical School, Boston, MA.

This research was primarily supported by the Cooley’s Anemia Foundation; March of Dimes Foundation; National Institute of Diabetes and Digestive and Kidney Diseases; and National Heart, Lung, and Blood Institute.

Brigham and Women’s Hospital