3 days popular7 days popular1 month popular3 months popular

How safe are ‘eye-safe’ lasers when very low-energy radiation can damage DNA?

Damage to DNA by high energy radiation constitutes the most lethal damage occurring at the cellular level.

Surprisingly, very low-energy interactions – with , for instance – can also induce , including . It is known that single strand breaks in the are amenable to repair but most double strand breaks are irreparable.

The propensity with which slow OH radicals damage DNA depends on their rotational energy: rotationally “hot” OH is more proficient in causing double breaks. These novel findings are from experiments conducted on DNA in a physiological environment.

Intense femtosecond laser pulses are propagated through water (in which DNA plasmids are suspended), creating plasma channels within water, resulting in generation, in situ, of electrons and OH radicals. It is shown that use of long laser wavelength light (1350 nm and 2200 nm) ensures only OH-induced damage to DNA is accessed. It is noteworthy that industry presently characterizes as “eye-safe” lasers that emit at wavelengths longer than 1300 nm.

But it is such wavelengths that are proficient at inducing damage to DNA: how safe is “eye-safe” when DNA in the eye can be readily damaged?

Source

Tata Institute of Fundamental Research