3 days popular7 days popular1 month popular3 months popular

Molecular Changes Akin To Alzheimer’s Discovered In Brain Following Mild Blast Injury

A multicenter study led by scientists at the shows that mild after blast exposure produces inflammation, and gene activation patterns akin to disorders of memory processing such as Alzheimer’s disease. Their findings were recently reported in the online version of the Journal of Neurotrauma.

Blast-induced traumatic brain injury (TBI) has become an important issue in combat casualty care, said senior investigator , M.D., professor and vice chair of critical care medicine and director of the at Pitt. In many cases of mild TBI, MRI scans and other conventional imaging technology do not show overt damage to the brain.

“Our research reveals that despite the lack of a lot of obvious neuronal death, there is a lot of molecular madness going on in the brain after a blast exposure,” Dr. Kochanek said. “Even subtle injuries resulted in significant alterations of brain chemistry.”

The research team developed a rat model to examine whether mild blast exposure in a device called a shock tube caused any changes in the brain even if there was no indication of direct cell death, such as bleeding. Brain tissues of rats exposed to blast and to a sham procedure were tested two and 24 hours after the injury.

Gene activity patterns, which shifted over time, resembled patterns seen in neurodegenerative diseases, particularly Alzheimer’s, Dr. Kochanek noted. Markers of inflammation and oxidative stress, which reflects disruptions of cell signaling, were elevated, but there was no indication of energy failure that would be seen with poor tissue oxygenation.

“It appears that although the neurons don’t die after a mild injury, they do sustain damage,” he said. “It remains to be seen what multiple exposures, meaning repeat concussions, do to the brain over the long term.”


Co-authors include researchers from the Safar Center for Resuscitation Research and the University of Pittsburgh School of Medicine; University of California, San Diego; ORA Inc., of Fredericksburg, Va.; Walter Reed Army Institute of ResearchDyn-FX Consulting Ltd, Amherstburg, ON; Uniformed Services University of the Health Sciences, Bethesda, MD; and Integrated Services Group, Inc., Potomac, MD.
The project was funded by the Defense Advanced Research Projects Agency.
University of Pittsburgh Schools of the Health Sciences