3 days popular7 days popular1 month popular3 months popular

More Effective Treatment Of Complex Infections Likely With Cutting-Edge Bacteria Research

are life forms, which, like all other life forms, struggle for the best living conditions for themselves. Therefore they will try to avoid getting attacked by the human , and therefore they have developed various ways to protect themselves from the human . When safe from the , they can focus on breeding and multiplying, and if they become numerous enough, the human body will experience their presence as an infection. Some bacteria are relatively harmless, while others are fatal. The bacteria avoid being attacked by the human by forming a biofilm – a surface to protect them against the .

“The biofilm contributes to bacterial resistance, and that can cause severe, persistent infections around heart valve implants and in lungs and the urinary tract,” explains postdoc. from the Department of Biochemistry and Molecular Biology at the University of Southern Denmark. Together with professor Poul Valentin-Hansen from the same institution and scientists from American Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, and Georgetown University Medical Center, Washington DC, he stands behind the new discovery.

The researchers now understand the underlying regulatory mechanisms behind the formation of biofilms. The mechanism involves small RNA molecules, which can affect bacterial gene expression and thus the decision of whether to form biofilm or not.

Bacteria can move by using their so-called flagella to swim with. When they need to form biofilms, they “turn off” the flagella, stop moving and start to form a biofilm.

“We have now established what decides whether they swim or not – and that determines whether they form biofilms or not,” explains Mikkel Girke Jørgensen and continues:

“Prospects for the pharmaceutical industry are huge. This increased understanding of biofilm formation may be the first step in creating new ways to treat complicated infections in the future. ”

Source

The researchers’ work is published in the prestigious journal Genes and Development, 15 May 2013, Vol 27, No. 10.
The work is funded by the Villum Foundation and the Lundbeck Foundation. Lundbeck Foundation has just awarded a new two-year grant of DKK 1,153,646 to go ahead with the work.
University of Southern Denmark