3 days popular7 days popular1 month popular3 months popular

New Insight Into Celiac Disease

For the first time, scientists have visualised an interaction between gluten and T-cells of the immune system, providing insight into how coeliac disease, which affects approximately 1 in 133 people, is triggered.

Published today in Immunity, the discovery was led by Dr Hugh Reid and of , of and of biotechnology company ImmusanT Inc, based in the US.

An increasingly diagnosed chronic inflammatory disorder, coeliac disease affects the digestive process of the small intestine. When a person with coeliac disease consumes gluten, their immune system triggers T-cells to fight the offending proteins, damaging the small intestine and inhibiting the absorption of important nutrients into the body. There are currently no treatments available apart from a diet completely free of gluten.

The researchers used the Australian Synchrotron to visually determine how T-cells of the immune system interact with gluten, a protein found in wheat, rye and barley, which causes coeliac disease. The discovery will boost attempts to produce a treatment allowing sufferers to resume a normal diet.

About half the population is genetically susceptible to coeliac disease because they carry the immune response genes HLA-DQ2 or HLA-DQ8. At least one in 20 people who carry HLA-DQ2 and about one in 150 who have HLA-DQ8 develop coeliac disease, but people with other versions of the HLA-DQ genes are protected.

This has led researchers to question how the immune system senses gluten.

Dr. Reid, a senior research fellow at Monash University, said the discovery was an important breakthrough for coeliac disease and .

“This is the first time that the intricacies of the interaction between gluten and two proteins that initiate immune responses have been visualised at a sub-molecular level,” Dr. Reid said.

This insight into a central event in coeliac disease will assist ImmusanT to develop a blood test and a therapeutic vaccine, Nexvax2®, for patients with coeliac disease who carry the gene HLA-DQ2. It is intended to restore immune tolerance to gluten and allow patients to return to again include gluten in their diet.

Future studies will investigate whether T-cell activation by gluten in patients with HLA-DQ2 follows similar principles as observed in this study that focused on HLA DQ8 mediated coeliac disease.

Chief Scientific Officer at ImmusanT, Dr Bob Anderson said the research presented a unique opportunity.

“Because we now know the gluten peptides responsible for coeliac disease, we can interrogate the molecular events leading to a self-destructive immune response,” Dr Anderson said.


The research was supported by an Australian Research Council Linkage grant.
Monash University