3 days popular7 days popular1 month popular3 months popular

Performing cellular surgery with a laser-powered nanoblade

To study certain aspects of cells, researchers need the ability to take the innards out, manipulate them, and put them back. Options for this kind of work are limited, but researchers reporting in Cell Metabolism describe a “nanoblade” that can slice through a cell’s membrane to insert mitochondria. The researchers have previously used this technology to transfer other materials between cells and hope to commercialize the nanoblade for wider use in bioengineering.

“As a new tool for cell engineering, to truly engineer cells for health purposes and research, I think this is very unique,” says Mike Teitell, a pathologist and bioengineer at the University of California, Los Angeles (UCLA). “We haven’t run into anything so far, up to a few microns in size, that we can’t deliver.”

Teitell and Pei-Yu “Eric” Chiou, also a bioengineer at UCLA, first conceived the idea of a nanoblade several years ago to transfer a nucleus from one cell to another. However, they soon delved into the intersection of stem cell biology and energy metabolism, where the technology could be used to manipulate a cell’s mitochondria. Studying the effects of mutations in the mitochondrial genome, which can cause debilitating or fatal diseases in humans, is tricky for a number of reasons.

This image shows human osteosarcoma cells and mitochondria
This image shows human osteosarcoma cells and mitochondria (green), with additional mitochondria (red) from human embryonic kidney cells transferred via the nanoblade. Very few red-labeled mitochondria are actually delivered by the nanoblade into each cell, compared to the pre-existing green mitochondria. Over a few weeks, the mitochondrial DNA in the red-labeled mitochondria will massively amplify
Image Credit: Ting-Hsiang Wu