3 days popular7 days popular1 month popular3 months popular

Poor fuel economy in the muscles may help lean people stay that way

We all know the type: the friend or colleague who stays slim and trim without much effort and despite eating the same high-calorie fare that causes everyone else to gain weight. As it turns out, the way the muscles of the inherently thin work may give them the edge.

Daily is an inherited trait with a strong association to how fat or thin a person is. Chaitanya K. Gavini et al. previously found that is a major predictor of daily level among humans and laboratory animals. In their new study, they compared female rats with high aerobic capacity (genetic tendency toward leanness) or low aerobic capacity (genetic tendency toward obesity) to investigate how muscle physiology affects leanness.

Though the rats in each group were similar in weight and , the rats with a high aerobic capacity were consistently more active than the low capacity rats. While all the rats had similar energy expenditures when at rest, big differences in (calorie burn) occurred during mild exercise. The researchers found the muscles of rats with lean genes demonstrated “poor fuel economy,” meaning that they burned more calories when performing the same exercise as those with fat genes. This may be due to more lean rats having higher levels of proteins that support and lower levels of proteins that encourage energy conservation and/or an increased sympathetic nervous system role in powering the muscles of lean rats.

According to the researchers: “This has implications for how we consider metabolism when attempting to prevent or treat obesity. Targeting of pathways maximizing skeletal muscle energy use during physical activity may take advantage of already existing mechanisms that are endogenously employed to a greater extent in naturally lean people.”

Source

The article: “Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis” American Journal of Physiology – Endocrinology and Metabolism Published 15 March 2014Vol. 306no. E635-E647DOI: 10.1152/ajpendo.00555.2013

American Physiological Society