3 days popular7 days popular1 month popular3 months popular

Reprogramming of a patient’s own cells into stem cells

The capacity to reprogram adult patient cells into pluripotent, embryonic-like, by nuclear transfer has been reported as a breakthrough by scientists from the US and the of Jerusalem.

The work, described in the journal Nature, was accomplished by researchers from the and by Nissim Benvenisty, the Herbert Cohn professor of Cancer Research and director of the Unit at the Institute of Life Sciences at the , and his graduate student Ido Sagi. The latter assisted in the characterization of the pluripotent nature of these cells.

Pluripotency means the ability of stem cells to develop into all the cells of our body, including those in the brain, heart, liver and blood. In 2012, the Nobel Prize in Physiology or Medicine was awarded for two discoveries showing that mature (differentiated) cells can be converted into pluripotent, embryonic-like cells, either by forced expression of genetic factors or by transfer of cell nuclei into female eggs, in a process called “reprogramming.”

However, the actual ability to reprogram cells from humans by nuclear transfer had only been accomplished until now by using fetal cells for this purpose, until this latest work involving reprogramming of adult patient cells demonstrated by the researchers from the US and the Hebrew University, as described in the new Nature article.

Future research should allow further characterization of these novel, pluripotent cell types and their comparison to other stem cells. “Human generated from adult cells may change the face of medicine,” says Prof. Benvenisty, leading to totally new, personalized genetic therapy involving the reprogramming of a patient’s own cells to achieve cell replacement and healing.


The Hebrew University of Jerusalem