3 days popular7 days popular1 month popular3 months popular

Transforming Free Oxygen Radicals Into Water And Oxygen

Researchers at the have successfully developed artificial organelles that are able to support the reduction of toxic oxygen compounds. This opens up new ways in the development of novel drugs that can influence pathological states directly inside the cell. The results have been published in the Journal Nano Letters.

are produced either as metabolic byproduct, or through environmental influences such as UV-rays and smog. If the concentration of inside the organism elevates to the point where the antioxidant defense mechanism is overwhelmed, the result can be oxidative stress, which is associated with numerous diseases such as cancer of arthritis.

The aggressive molecules are normally controlled by endogenous antioxidants. Within this process, organelles located inside the cell, so-called , play an important part, since they assist in regulating the concentration of free oxygen radicals.

Nanocapsules Transform Radicals into Water and Oxygen

Prof. and her research group at the University of Basel have successfully produced artificial peroxisomes that mimic the natural organelle. The researchers developed a cell organelle based on polymeric nanocapsules, in which two types of enzymes are encapsulated. These enzymes are able to transform free oxygen radicals into water and oxygen.

In order to verify the functionality inside the cell, channel proteins were added to the artificial peroxisome’s membrane, to serve as gates for substrates and products. The results show that the artificial peroxisomes are incorporated into the cell, where they then very efficiently support the natural peroxisomes in the detoxification process.

Novel Drugs

This type of effective principle targets the cell dysfunction directly on the cellular level, thus representing a further step towards the development of novel drugs that will make patient-oriented and personalized treatments possible in the future.

Source

Original Citation: Pascal Tanner, Vimalkumar Balasubramanian, and Cornelia G. Palivan Aiding Nature’s Organelles: Artificial Peroxisomes Play Their Role: http://dx.doi.org/10.1021/nl401215n Nano Lett., 2013, 13 (6), pp 2875–2883 | doi: 10.1021/nl401215n

University of Basel